Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(3): 1612-1628, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38319691

RESUMO

Gelatin is a water-soluble natural polyampholyte with poor mucoadhesive properties. It has traditionally been used as a major ingredient in many pharmaceuticals, including soft and hard capsules, suppositories, tissue engineering, and regenerative medicine. The mucoadhesive properties of gelatin can be improved by modifying it through conjugation with specific adhesive unsaturated groups. In this study, gelatin was modified by reacting with crotonic, itaconic, and methacrylic anhydrides in varying molar ratios to yield crotonoylated-, itaconoylated-, and methacryloylated gelatins (abbreviated as Gel-CA, Gel-IA, and Gel-MA, respectively). The successful synthesis was confirmed using 1H NMR, FTIR spectroscopies, and colorimetric TNBSA assay. The effect of chemical modification on the isoelectric point was studied through viscosity and electrophoretic mobility measurements. The evolution of the storage (G') and loss (G'') moduli was employed to determine thermoreversible gelation points of modified and unmodified gelatins. The safety of modified gelatin derivatives was assessed with an in vivo slug mucosal irritation test (SMIT) and an in vitro MTT assay utilizing human pulmonary fibroblasts cell line. Two different model dosage forms, such as physical gels and spray-dried microparticles, were prepared and their mucoadhesive properties were evaluated using a flow-through technique with fluorescent detection and a tensile test with ex vivo porcine vaginal tissues and sheep nasal mucosa. Gelatins modified with unsaturated groups exhibited superior mucoadhesive properties compared to native gelatin. The enhanced ability of gelatin modified with these unsaturated functional groups is due to the formation of covalent bonds with cysteine-rich subdomains present in the mucin via thiol-ene click Michael-type addition reactions occurring under physiologically relevant conditions.


Assuntos
Anidridos , Gelatina , Animais , Suínos , Humanos , Ovinos , Gelatina/química , Fenômenos Químicos , Mucosa , Viscosidade , Géis
2.
Int J Pharm ; 652: 123852, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38280501

RESUMO

This study comprises the comprehensive toxicological assessment of thiolated organosilica nanoparticles (NPs) synthesised from 3-mercaptopropyltrimethoxysilane (MPTS). We investigated the influence of three different types of nanoparticles synthesised from 3-mercaptopropyltrimethoxysilane: the starting thiolated silica (Si-NP-SH) and their derivatives prepared by surface PEGylation with PEG 750 (Si-NP-PEG750) and 5000 Da (Si-NP-PEG5000) on biological subjects from in vitro to in vivo experiments to explore the possible applications of those nanoparticles in biomedical research. As a result of this study, we generated a comprehensive understanding of the toxicological properties of these nanoparticles, including their cytotoxicity in different cell lines, hemolytic properties, in vitro localisation, mucosal irritation properties and biodistribution in BALB/c mice. Our findings indicate that all three types of nanoparticles can be considered safe and have promising prospects for use in biomedical applications. Nanoparticles did not affect the viability of HPF, MCF7, HEK293 and A549 cell lines at low concentrations (up to 100 µg/mL); moreover, they did not cause organ damage to BALB/c mice at concentrations of 10 mg/kg. The outcomes of this study enhance our understanding of the impact of organosilica nanoparticles on health and the environment, which is vital for developing silica nanoparticle-based drug delivery systems and provides opportunities to expand the applications of organosilica nanoparticles.


Assuntos
Nanopartículas , Compostos de Organossilício , Humanos , Camundongos , Animais , Distribuição Tecidual , Células HEK293 , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Polietilenoglicóis/toxicidade
3.
Gels ; 8(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36135302

RESUMO

Cryogels are a unique macroporous material for tissue engineering. In this work, we study the effect of hyaluronic acid on the physicochemical properties of cryogel as well as on the proliferation of a 3D model of mesenchymal stem cells. The functional groups of the synthesized cryogels were identified using Fourier transform infrared spectroscopy. With an increase in the content of hyaluronic acid in the composition of the cryogel, an increase in porosity, gel content and swelling behavior was observed. As the hyaluronic acid content increased, the average pore size increased and more open pores were formed. Degradation studies have shown that all cryogels were resistant to PBS solution for 8 weeks. Cytotoxicity assays demonstrated no toxic effect on viability of rat adipose-derived mesenchymal stem cells (ADMSCs) cultured on cryogels. ADMSC spheroids were proliferated on scaffolds and showed the ability of the cryogels to orient cell differentiation into chondrogenic lineage even in the absence of inductive agents. Thus, our results demonstrate an effective resemblance to extracellular matrix structures specific to cartilage-like microenvironments by cryogels and their further perspective application as potential biomaterials.

4.
J Mater Chem B ; 10(27): 5129-5153, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35735175

RESUMO

Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.


Assuntos
Anti-Infecciosos , Matriz Extracelular de Substâncias Poliméricas , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Biofilmes , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Nanotecnologia
5.
Polymers (Basel) ; 12(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271770

RESUMO

Despite the high regenerative capacity of bone tissue, there are some cases where bone repair is insufficient for a complete functional and structural recovery after damage. Current surgical techniques utilize natural and synthetic bone grafts for bone healing, as well as collagen sponges loaded with drugs. However, there are certain disadvantages associated with these techniques in clinical usage. To improve the therapeutic efficacy of bone tissue regeneration, a number of drug delivery systems based on biodegradable natural and synthetic polymers were developed and examined in in vitro and in vivo studies. Recent studies have demonstrated that biodegradable polymers play a key role in the development of innovative drug delivery systems and tissue engineered constructs, which improve the treatment and regeneration of damaged bone tissue. In this review, we discuss the most recent advances in the field of polymer-based drug delivery systems for the promotion of bone tissue regeneration and the physical-chemical modifications of polymers for controlled and sustained release of one or more drugs. In addition, special attention is given to recent developments on polymer nano- and microparticle-based drug delivery systems for bone regeneration.

6.
Langmuir ; 34(28): 8347-8354, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29909627

RESUMO

Nanoparticle characteristics, including their size, are governed by the reagents employed and the reaction parameters. Here, we systemically vary the catalyst, oxygen content, temperature, and solvent to modify the size and zeta-potential of thiolated organosilica nanoparticles. The particles were synthesized by self-condensation of 3-mercaptopropyltrimethoxysilane in a range of organic solvents in contact with oxygen, with NaOH and other catalysts. The particle size increased with increasing reaction temperature (70 ± 1 nm at 50 °C; 50 ± 1 nm at room temperature) but decreased when air was bubbled through the reaction mixture compared to no bubbling. A significant decrease in the particle size was seen when increasing the dielectric constant of the solvent and when increasing the catalyst concentration; from these, we provide empirical equations that can be used to design particle sizes by manipulating the dielectric constant of the solvent (or cosolvents) or by varying the NaOH catalyst concentration when dimethylsulfoxide is the selected solvent.

7.
RSC Adv ; 8(12): 6471-6478, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35540425

RESUMO

Functionalising nanoparticles with polymers has gained much interest in recent years, as it aids colloidal stability and manipulation of surface properties. Here, polymer-coated thiolated silica nanoparticles were synthesised by self-condensation of 3-mercaptopropyltrimethoxysilane in the presence of hydroxyethylcellulose. These nanoparticles were characterised by dynamic light scattering, small angle neutron scattering, Nanoparticle Tracking Analysis, Raman spectroscopy, FT-IR spectroscopy, thermogravimetric analysis, Ellman's assay, transmission electron microscopy and cryo-transmission electron microscopy. It was found that increasing the amount of hydroxyethylcellulose in the reaction mixture increased the nanoparticle size and reduced the number of thiol groups on their surface. Additionally, by utilising small angle neutron scattering and dynamic light scattering, it was demonstrated that higher concentrations of polymer in the reaction mixture (0.5-2% w/v) resulted in the formation of aggregates, whereby several silica nanoparticles are bridged together with macromolecules of hydroxyethylcellulose. A correlation was identified between the aggregate size and number of particles per aggregate based on size discrepancies observed between DLS and SANS measurements. This information makes it possible to control the size of aggregates during a simple one-pot synthesis; a prospect highly desirable in the design of potential drug delivery systems.

8.
Int J Pharm ; 532(1): 345-351, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28844902

RESUMO

A liquid crystalline (LC) system, composed of phosphatidylcholine, sorbitan monoleate, and tocopherol acetate, was investigated to understand the in vivo transformation after subcutaneous injection, coupled with the physicochemical and pharmacokinetic properties of the formulation. The rat model was utilized to monitor a pseudo-time course transformation from a precursor LC formulation to the LC matrix, coupled with the blood concentration profiles of the formulations containing leuprolide acetate. Three formulations that result in the HII phase, demonstrating dissimilar in vitro release profiles, were used. The formulation showing the highest AUC, Cmax and Tmax, also displayed the greatest release rate in vitro, the lowest viscosity (LC matrix), and an earlier transformation (LC precursor to matrix) in vivo. A potential link between viscosity, phase transformation, and drug release properties of a liquid crystalline system is described.


Assuntos
Sistemas de Liberação de Medicamentos , Cristais Líquidos , Animais , Antineoplásicos Hormonais/administração & dosagem , Antineoplásicos Hormonais/sangue , Antineoplásicos Hormonais/química , Antineoplásicos Hormonais/farmacocinética , Liberação Controlada de Fármacos , Fármacos para a Fertilidade Feminina/administração & dosagem , Fármacos para a Fertilidade Feminina/sangue , Fármacos para a Fertilidade Feminina/química , Fármacos para a Fertilidade Feminina/farmacocinética , Hexoses/administração & dosagem , Hexoses/química , Hexoses/farmacocinética , Injeções Subcutâneas , Leuprolida/administração & dosagem , Leuprolida/sangue , Leuprolida/química , Leuprolida/farmacocinética , Cristais Líquidos/química , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/química , Fosfatidilcolinas/farmacocinética , Ratos , Reologia , alfa-Tocoferol/administração & dosagem , alfa-Tocoferol/química , alfa-Tocoferol/farmacocinética
9.
Int J Pharm ; 514(1): 314-321, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27863678

RESUMO

Although liquid crystal (LC) systems have been studied before, their utility in drug delivery applications has not been explored in depth. This study examined the development of a 1-month sustained release formulation of leuprolide acetate using an in situ-forming LC matrix. The phase progression upon water absorption was tested through construction of ternary phase diagrams of phosphatidylcholine, sorbitan monooleate, and tocopherol acetate (TA) at increasing water content. Small angle X-ray scattering revealed the presence of lamellar and hexagonal mesophases. The physicochemical characteristics and in vitro drug release were evaluated as a function of the ternary component ratio and its resultant phase behavior. Formulations with increased water uptake capacity displayed greater drug release and enhanced erodability. Removal of TA resulted in increased water uptake capacity and drug release, where 8% (w/w) TA was determined as the critical concentration threshold for divergence of release profiles. In conclusion, characterization of the resultant HII mesophase region provided information of the impact the individual components have on the physicochemical properties and potential drug release mechanisms. This high mitigating impact of TA on drug release indicates the use of TA as a tailoring agent, broadening the therapeutic applications of this LC system.


Assuntos
Preparações de Ação Retardada/química , Hexoses/química , Cristais Líquidos/química , Fosfatidilcolinas/química , alfa-Tocoferol/química , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Leuprolida/química , Espalhamento a Baixo Ângulo , Água/química , Difração de Raios X/métodos
10.
Int J Pharm ; 512(1): 32-38, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27530813

RESUMO

Intravesical drug administration is used to deliver cytotoxic agents through a catheter to treat bladder cancer. One major limitation of this approach is poor retention of the drug in the bladder due to periodic urine voiding. Mucoadhesive dosage forms thus offer significant potential to improve drug retention in the bladder. Here, we investigate thiolated silica nanoparticles retention on porcine bladder mucosa in vitro, quantified through Wash Out50 (WO50) values, defined as the volume of liquid necessary to remove 50% of the adhered particles from a mucosal tissue. Following irrigation with artificial urine solution, the thiolated nanoparticles demonstrate significantly greater retention (WO50 up to 36mL) compared to non-mucoadhesive dextran (WO50 7mL), but have weaker mucoadhesive properties than chitosan (WO50 89mL). PEGylation of thiolated silica reduces their mucoadhesion with WO50 values of 29 and 8mL for particles decorated with 750 and 5000Da PEG, respectively. The retention of thiolated silica nanoparticles is dependent on their thiol group contents and physical dimensions.


Assuntos
Mucosa/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Compostos de Sulfidrila/administração & dosagem , Compostos de Sulfidrila/química , Bexiga Urinária/metabolismo , Adesividade , Animais , Disponibilidade Biológica , Quitosana/administração & dosagem , Quitosana/química , Quitosana/farmacocinética , Nanopartículas/metabolismo , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Dióxido de Silício/administração & dosagem , Compostos de Sulfidrila/farmacocinética , Suínos
11.
Mol Pharm ; 11(10): 3556-64, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25165886

RESUMO

Overcoming the natural defensive barrier functions of the eye remains one of the greatest challenges of ocular drug delivery. Cornea is a chemical and mechanical barrier preventing the passage of any foreign bodies including drugs into the eye, but the factors limiting penetration of permeants and nanoparticulate drug delivery systems through the cornea are still not fully understood. In this study, we investigate these barrier properties of the cornea using thiolated and PEGylated (750 and 5000 Da) nanoparticles, sodium fluorescein, and two linear polymers (dextran and polyethylene glycol). Experiments used intact bovine cornea in addition to bovine cornea de-epithelialized or tissues pretreated with cyclodextrin. It was shown that corneal epithelium is the major barrier for permeation; pretreatment of the cornea with ß-cyclodextrin provides higher permeation of low molecular weight compounds, such as sodium fluorescein, but does not enhance penetration of nanoparticles and larger molecules. Studying penetration of thiolated and PEGylated (750 and 5000 Da) nanoparticles into the de-epithelialized ocular tissue revealed that interactions between corneal surface and thiol groups of nanoparticles were more significant determinants of penetration than particle size (for the sizes used here). PEGylation with polyethylene glycol of a higher molecular weight (5000 Da) allows penetration of nanoparticles into the stroma, which proceeds gradually, after an initial 1 h lag phase.


Assuntos
Córnea/metabolismo , Fluoresceína/química , Microscopia de Fluorescência/métodos , Nanopartículas/metabolismo , Polímeros/metabolismo , Animais , Bovinos , Sistemas de Liberação de Medicamentos , Técnicas In Vitro , Nanopartículas/química , Polímeros/química , beta-Ciclodextrinas/química
12.
Langmuir ; 30(1): 308-17, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24354390

RESUMO

Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(N-vinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.


Assuntos
Nanopartículas/química , Polímeros/química , Difusão , Tamanho da Partícula , Soluções , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...